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Introduction
Feynman integrals are the key components involved in precision calculations in quantum field
theory, and are crucial to the computation of scattering amplitudes. However, they can
often be difficult to evaluate. The search for more efficient computational techniques is likely
to be aided by gaining a greater understanding of their algebraic structure.

In recent years, it has been conjectured that Feynman integrals obey a coaction principle
[1], which postulates the existence of a mathematical operation called a coaction which
allows Feynman integrals to be decomposed into pairs of simpler integrals.

This project focuses on the diagrammatic coaction, which realises the coaction in terms
of operations performed on the corresponding Feynman graphs.
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Multiple Polylogarithms and Coactions
Multiple polylogarithms (MPLs) form a class of functions that generalise the classical poly-
logarithms to several variables, and they arise in the computation of a large class of Feynman
integrals [2].

MPLs have the iterated integral representation

G(z1, z2, . . . , zn; y) =
∫ y

0

dt

t− z1
G(z2, . . . , zn; t).

In the special case where all zi are equal to zero, we define

G(~0n; y) = 1
n! logn(y).

Let H be a unital associative algebra, and A be a Q-vector space. A coaction is a linear
map ∆ : A→ A⊗H which is

1. A homomorphism: ∆(a · b) = ∆(a) ·∆(b);
2. Coassociative: (∆⊗ id) ∆ = (id⊗∆) ∆.

Let A be the Q-vector space spanned by all MPLs. This space can be endowed with a
coaction ∆MPL : A → A ⊗ A/(iπA), where the second entry is only defined modulo iπ.
For the classical polylogarithms, this coaction is given by

∆MPL(Lin(z)) = 1⊗ Lin(z) +
n−1∑
k=0

1
k! Lin−k(z)⊗ logk(z).

One-Loop Feynman Integrals
We work in dimensional regularisation in D = d− 2ε dimensions. In the notation of [3], the
scalar one-loop n-point Feynman integrals are defined as

J̃n = eγEε
∫

dDk

iπD/2

n∏
j=1

1
(k − qj)2 −m2

j
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To discuss the diagrammatic coaction, we must introduce two different diagrammatic oper-
ations which can be performed on a one-loop graph.

Pinching a propagator
This corresponds to deleting a propagator
and identifying the vertices at its endpoints,
yielding a one-loop integral with fewer prop-
agators.
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These pinched graphs appear in the first en-
tries of the diagrammatic coaction.

Notation:
Bold lines: Massive propagators
Light lines: Massless propagators

Cutting a propagator
This corresponds to replacing the propaga-
tor by a Dirac delta function which forces it
to go on mass-shell.

1
p2 −m2 −→ −2πiδ(p2 −m2)

Letting C denote the subset of propagators
which are cut, we obtain a cut Feynman in-
tegral CCJ̃n.
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The Diagrammatic Coaction at One Loop
To find each term in the diagrammatic coaction of a one-loop Feynman graph, start by
choosing a nonempty subset C of propagators [3].
The second entry of that term is the cut Feynman integral CCJn.
The corresponding first entry depends on the parity of |C|:

• |C| odd: The first entry is the graph obtained by pinching the uncut edges.
• |C| even: The first entry is the graph obtained by pinching the uncut edges, plus one-half
times the sum of all graphs obtained by pinching an additional edge.

To obtain the full diagrammatic coaction, repeat this procedure for all possible nonempty
subsets C and take the sum of the resulting terms.

Example: The diagrammatic coaction of the massive bubble integral is
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These diagrams can also be evaluated in terms of MPLs, and the diagrammatic coaction ∆
agrees with the known coaction ∆MPL.

The Diagrammatic Coaction Beyond One Loop
The diagrammatic coaction on one-loop Feynman integrals is well understood [2, 3], but
there are difficulties associated with extending it to the multi-loop case. For example, multi-
loop integrals may have

•More than one master integral with the same set of propagators.
• Several independent cut integrals which share the same set of on-shell propagators [4].

The main focus of this project has been the two-loop three-point ladder diagram:
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In four dimensions, this integral evaluates to

TL(p2
1, p

2
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2
3) = i(p2

1)−2 1
(1− z)(1− z̄)(z − z̄)F (z, z̄),

where
F (z, z̄) = 6[Li4(z)− Li4(z̄)]− 3 log(zz̄)[Li3(z)− Li3(z̄)] + 1

2 log2(zz̄)[Li2(z)− Li2(z̄)].

Since this is a function of MPLs, we can easily obtain the coaction ∆MPL. To find a dia-
grammatic representation of this coaction, the tensor products must be arranged such that

• the first entries are expressed in terms of two-loop master integrals, and
• the second entries are expressed in terms of cuts of the original diagram.

The ladder can be reduced to its master integrals using the Mathematica package FIRE [5],
which gives the reduction formula
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These master integrals are expected to appear in the first entries of the diagrammatic coac-
tion, while the second entries will be the corresponding cut integrals.

Summary
•The diagrammatic coaction allows Feynman graphs to be decomposed into pairs of
pinched and cut graphs.

• It provides an insight into the algebraic and analytic structure of Feynman integrals.
•The diagrammatic coaction is well-understood at one loop, but extending it to themulti-
loop case is still an area of ongoing research.
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