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@ Intro & Feynman diagrams



Introduction

Motivation of particle physics: identify what makes up the world, explain physical
phenomena from particle interactions (3/4 forces explained by quantum field theory).
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=




Introduction

Quantum field theory (without Feynman diagrams):
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L(},b,..) = H(p,m,...) Hamiltonian
H(p,m,...) = ﬂ(gg, Ty .. Quantisation
{6(x), 7(¥) }poisson = 0P (x —y) = [6(x),7(y)] = i10® (x —y)
o(t) = (0|T{o(x)d(y)}0)
o(kiky...|T{exp [T dt Hit)}|piPs--Yo — (kika...|S|pipy-.) Scattering
S—- M

M= do/d,T, ...



Introduction

Quantum field theory (with Feynman diagrams):

do
— I, ..
L — —>M—>dQ, :

Given Feynman rules, can interpret diagrams to get M. Hooray!



Feynman diagrams

propagator

vertex - external leg

S




Feynman diagrams

¢* theory Quantum ElectroDynamics
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Feynman diagrams

Additional rules:
» Impose momentum conservation at each vertex.
> Integrate over undetermined loop momentum.
» Divide by symmetry factor.

Examples:
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One-loop Feynman integrals

In order to isolate divergences, use dimensional regularisation with D = 4 — 2e:
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One-loop Feynman integrals

We can express any one-loop Feynman diagram in terms of the first few scalar integrals

O - <[ ]:[

which correspond to a basis of integrals called master integrals

dPk 1 1
irD/2 (k= p1)? = mi (k — p1 — p2)® — mj

Ié) ({pz -pj};mf;e) = eVEe/
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One-loop Feynman integrals

It turns out that all one-loop Feynman integrals are basically logarithms! If D = 2 [%] — 2e,

Q = —eB¢ (m2)_6 T (e)

— —% + log(m?) — 1—126 (6log?(m?) + ) + 1—1262 (2log®(m?) + m* log(m?) + 4¢(3))

- 4%063 (=160¢(3) log(m?) — 20log" (m?) — 207* log?(m?) — 37%) + O ("),

2¢°C(1—¢)’T(1+¢) -
T T2 (=)

1 1
= = +log(=p) = ;€ (6log®(—p*) — 7%) + 3¢ (2log’(—p?) — 7*log(—p?) + 28¢(3)

+ 3 (—3360¢(3) log (—p?) — 60log*(—p?) + 607> log®(—p?) + 477*) + O (€*) .

1440



Summary

Physics ~ L ~ ~ log, Lis, . ..



@ Symbol via coproduct



Symbols: Motivation

The symbol map: A linear map which captures the main combinatorial and analytical
properties of certain transcendental functions.
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Symbols: Motivation

The symbol map: A linear map which captures the main combinatorial and analytical
properties of certain transcendental functions.

~ Lin(2) + Lia(2) — log (22) log (i - f)
ls
—2®(1-2)+20(1-2)-(1-2)02+20(1-2)+(1-2)®z—290 (1—2)

Special cases of the symbol map have been used by mathematicians for over thirty years.

More recently, the symbol map has been introduced into physics, where it can be used to
greatly simplify the analytic expressions for many Feynman integrals.



Multiple Polylogarithms (MPLs)

Many Feynman integrals can be expressed in terms of multiple polylogarithms (MPLs).



Multiple Polylogarithms (MPLs)

Many Feynman integrals can be expressed in terms of multiple polylogarithms (MPLs).

Iterated integral representation:
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Multiple Polylogarithms (MPLs)

Many Feynman integrals can be expressed in terms of multiple polylogarithms (MPLs).

Iterated integral representation:

2 dt
G(ay,ag,...,an;2) = ; G(ag,...,an;t)
o t—a

Weight of the MPL

In the special case where all a; are equal to zero,

1
G(0432) = — log"(2)

G(0;2) = log z, G(a;z) = log (1 - E) ,

a

G(ap;2) = %logn (1 - 2) , G(0p-1,a;2) = —Li, (2) .
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Let H be a unital associative algebra.

A coproduct is a map A : H — H ® H which is:

1. A homomorphism: Aa-b) = Ala) - A(b)
2. Coassociative: (A ®id)A = (id ® A)A



Let H be a unital associative algebra.

A coproduct is a map A : H — H ® H which is:

1. A homomorphism: Aa-b) = Ala) - A(b)
2. Coassociative: (A ®id)A = (id ® A)A

The Coproduct on MPLs

Let A be the Q-vector space spanned by all MPLs.
Then the quotient space H = A/(imA) can be endowed with a coproduct.
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The Coproduct on Multiple Polylogarithms

For the ordinary logarithm,

A (log(z)) = 1 ® log(z) + log(z) ® 1
For the classical polylogarithms,

n—1

A (Lin(2)) = 18 Lin(z) + Y 1 Lin-+(z) ® log*(z)
k=0



The Coproduct on Multiple Polylogarithms

For the ordinary logarithm,

A (log(z)) = 1 ®log(z) + log(z) ® 1

For the classical polylogarithms,

n—1

A (Lin(2)) = 18 Lin(z) + Y 1 Lin-+(z) ® log*(z)
k=0

A (Lig(2)) = 1 ® Lia(z) + Liz(2) ® 1 — log(1 — 2) ® log(z2)

A (Liz(z)) = 1 ® Lig(2) + Liz(2) ® 1 + Lia(2) ® log(z) — %log(l — 2) ® log?(2)

(Note that Lij(z) = —log(1 — 2).)
R e ool Aphabet of cncioop Feynman dingrame [



The Symbol

Coassociativity = A can be uniquely iterated.

The maximal iteration of the coproduct is called the symbol S:
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This means:

S(MPL of weight n) = Linear combination of tensor products of n MPLs of weight one.



The Symbol

Coassociativity = A can be uniquely iterated.

The maximal iteration of the coproduct is called the symbol S:
S:Hn%%l@"'@%l

This means:

S(MPL of weight n) = Linear combination of tensor products of n MPLs of weight one.

The Symbol Map

To find the symbol of an MPL of weight n:
1. Iteratively apply the coproduct to the MPL n times.

2. Extract the terms in which all entries have weight one (i.e. the ordinary
logarithms).

Alexander Farren, Eliza Somerville, Mikey Whelan 15/26



Symbols of MPLs

Some simple examples:

A (Liz(2)) = 1 ® Lia(z) + Liz(2) ® 1—1og(1 — 2) ® log 2
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Symbols of MPLs

Some simple examples:

A (Liz(2)) = 1 ® Lia(z) + Liz(2) ® 1—1og(1 — 2) ® log z

= S (Liz(z)) = —log(l — z) ® log 2

+ 1 ® Lia(2) ® log(z) + Liz(2) ® 1 ® log(z) + Lia(z) ® log(z) ® 1
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Symbols of MPLs

Some simple examples:

A (Liz(2)) = 1 ® Lia(z) + Liz(2) ® 1—1og(1 — 2) ® log z

= S (Liz(z)) = —log(l — z) ® log 2

+ 1 ® Lia(2) ® log(z) + Liz(2) ® 1 ® log(z) + Lia(z) ® log(z) ® 1

1 1
—§1®log(1—z)®log2z—510g(1—z)®1®10g2z

1
=5 log(1 — 2) ® log? z ® 1—log(1 — 2) ® log z ® log 2

[ = S (Li3(2)) = —log(1 — 2) ® log z ® log =




Symbols of MPLs

Since all entries in the symbol are ordinary logarithms, it is conventional to show only their
arguments; for example,

S (Liz(2))
S (Lis(2))

-2 ez
—-1-2)®zz



Symbols of MPLs

Since all entries in the symbol are ordinary logarithms, it is conventional to show only their

arguments; for example,
S (Lig(2)) = —(1 — 2) ® z,

SLizg(2)=—(1-2)®zQz

General Form of the Symbol

In general, the symbol of any MPL f of weight n has the form

S(f) = Z C’il,...,ijf’il ®®f2n’

where the ¢;, .. ;, are coefficients, and the values f; are known as the symbol letters.

n
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Symbols of MPLs

Since all entries in the symbol are ordinary logarithms, it is conventional to show only their
arguments; for example,

S(Liz(2)) = -(1-2)® 2,
SLizg(2)=—(1-2)®zQz

General Form of the Symbol

In general, the symbol of any MPL f of weight n has the form

S(f) = Z C’il,...,ijf’il ®®fln’

where the ¢;, .. ;, are coefficients, and the values f; are known as the symbol letters.

n

For Feynman integrals: Letters are functions of the external momenta and propagator
masses:
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The Symbol Alphabet

The set of all letters which occur in the symbol of a given Feynman integral is known as its
symbol alphabet.
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The set of all letters which occur in the symbol of a given Feynman integral is known as its
symbol alphabet.

Knowing the alphabet of a given integral is useful because it enables us to write ansétze for
the symbol.
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The Symbol Alphabet

The set of all letters which occur in the symbol of a given Feynman integral is known as its
symbol alphabet.

Knowing the alphabet of a given integral is useful because it enables us to write ansétze for
the symbol.

Alphabet — Symbol — Integral

Our focus: one-loop integrals.

M Generic case: The alphabet for one-loop integrals has been studied in
detail for finite integrals where all propagators are massive.

(] Non-generic case: The alphabet for non-generic one-loop integrals, such
as those involving massless propagators, is not yet fully understood.



® Symbol via A-determinant



Symbol of Bubble Diagrams

With a change of variables, the general bubble diagram in D = 2 — 2¢ dimensions is given by

er T+ ()

w9 Fy (—6,1 +e1—c¢ v _)

Jo (p*;mi, m3) = w—w

—1
—(w—=1)"%F —e,l—l—e;l—e;w _)],

w — W
mi
p*’

2
) ~ m .
W = (1—w)(1—w) — p_22, J2 (p27m%7mg) ==

We can now evaluate the symbol in order of epsilon.



Symbol of Bubble Diagrams

With a change of variables, the general bubble diagram in D = 2 — 2¢ dimensions is given by

er T+ ()

w9 Fy (—6,1 +e1—c¢ v _)

Jo (p*;mi, m3) = w—w

—1
—(w—=1)"%F —e,l—l—e;l—e;w _)],

w — W
mi
p*’

2
) ~ m .
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Symbol of Bubble Diagrams

With a change of variables, the general bubble diagram in D = 2 — 2¢ dimensions is given by

1—e
w9 Fy (—6, 1+¢1—c¢ v _)

T (1+¢) (—p2)”

Jo (p?ymi,md) = —

w—w

—1
—(w—-1)"%F" —6,1+6;1—6;w _)],

w— W
% % 2 2 2 2
W =% 1-w)(l-w)=—,  j2(p’smi,m3) S T Fw_a)
We can now evaluate the symbol in order of epsilon.
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Symbol of Bubble Diagrams

With a change of variables, the general bubble diagram in D = 2 — 2¢ dimensions is given by

e (1+e) (—p?)

Jo (p?ymi,md) = —

w9 Fy (—6,1+e;1—e; v _)
w— W

—1
—(w—-1)"%F" —6,1+6;1—6;w _)],

w— w
% % 2 2 2 2
WW = —5- 1-—w)(l—-—w)=—, J2 (posmi,my) = ———F——.
p2 ( )( ) 9 ( 1 2) pZ(w—w)
We can now evaluate the symbol in order of epsilon.
O(e): i (®ﬁ - ®%) .
1y. 1
(9(6) 5(_®2pww+2pww®__2pww®___®2pww+"')'
1 w—w 1— w w
= the alphabet i , o .
@ D T {2p2ww l-w'l-w'l-wl-w }



Parameterising Feynman Integrals

Scalar multi-loop Feynman integrals are of the form

/H dPk, " 1
=1 in% q] +m

and can be parameterised using Symanzik graph polynomials & and F:

(v — %) Mint Mint i . (u)y—(l+1)D/2
= ——— d"mta 0(1 — J -
Jr H;’:i I'(v}) / a Za] (]:')V—ID/2

Computing graph polynomials from spanning trees

U= Mo 7= ¥ (I a]" uzal_

T;eT? e ¢T; (Ti,Tj)ETZ ek¢(Ti,Tj)

E.
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Landau Singularities

The quantity
Q=3 wel—g2 +md)

ecE

appears in the denominator during the parameterisation. The Landau equations

a _ _
2Q=0,V=1,...,L

capture type 1 and type 2 singularities associated to the modified Cayley determinant and
Gram determinant vanishing respectively.



Triangle graph with massive leg and propagator

m U=a +az+as,
F = —aza1p® + (a1 + az + az)(aym?).

J=I@3- §> /d3a5(1 — (a1 +az + a3)).z7/_f§a)—3_127
I'(1—e€ ! 2 - —€
(—)/0 da(l — a)~“(m*(1 — :?a)) 1

—€
2

P(l - 6) 2\ —1— , p-
=—" € oF(1 2 = & .
6(1—6)(m) USRS ( 7112’>

We can always set U equal to unity for 1 loop.




Bubble Diagram

The Lee-Pomeransky polynomial for the general bubble diagram is given by
G=U+F =z1+22+ (M2 + m} — p*)z129 — M3z} — m3z3.

The convex hull of the exponents of the monomials yields the Newton polytope.
)
2Q %5
Aa4 = m%
_ 2
1@ a2 ag Ras =My
Aasas; = )‘(p2>m%vm§)

2
a1 (&7} Aamzaws =D

1 2T
We can write the reduced principal A-determinant as

E:l (g) - Aa4 Aa5 A<Jz40z5 Aal 20405

= mim3(p* +mi + m3 — 2p°m? — 2p*m3 — 2mim3)p°. (1)

The symbol alphabet of one-loop Feynman diagrams -




Symbol Alphabet for Bubble

In even space-time dimension the letters are

—1 -1 2p?
W = — 5 W = R W = I
! 2m? 2 2m3 12 A(p2, m2, m3)

—m? +m3 +p? — VA2, m2,m
Wy =

p)
2
—m? +m3 + p2 + /A(p2, m?, m3




Open questions

> What is the symbol alphabet?
> At which order € do letters appear?
» Where do letters appear in words relative to each other?

» When can we take limits to recover more diagrams from the general case?



Thank you
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