
Multi-Objective Optimisation Applied to the
Electoral Redistricting of Ireland

Eliza Somerville, Alexander Farren,

Ben McGloin and Mikey Whelan

31 August 2023

Contents

1 Introduction 3
1.1 Background . 3
1.2 Electoral Districting in Ireland . 3
1.3 Definitions and Nomenclature . 7
1.4 Data Aggregation and Preparation . 9

1.4.1 Data Sources . 9
1.4.2 Finding Neighbouring EDs . 10

1.5 Outline . 11

2 Evolutionary Algorithm 12
2.1 Evolutionary Algorithm . 12

Step 1: Mutation . 12
Step 2: Natural Selection . 12
Step 3: Evolution . 13

2.2 Code Implementation . 13

3 Reward Function 18
3.1 Contiguity . 18
3.2 Seat Equivalent Representation . 21
3.3 County Boundaries . 22
3.4 Temporal Continuity . 24
3.5 The Complete Reward Function . 24
3.6 Additional Considerations . 24

3.6.1 Compactness . 24
3.6.2 Significant Physical Features . 25
3.6.3 Population Density . 25

4 Results and Discussion 27
4.1 Results . 27
4.2 Discussion . 32

4.2.1 Contiguity . 32
4.2.2 SER . 32
4.2.3 Respect for County Boundaries . 32
4.2.4 Temporal Continuity . 33

4.3 Possible Improvements . 33
4.3.1 Tuning of Weight Parameters . 33
4.3.2 Stopping Criterion . 33
4.3.3 Crossover Between Individuals . 33
4.3.4 Allowing EDs to Flip Multiple Times . 34

4.4 Conclusion . 34

2

1
Introduction

In 2023, the Electoral Commission of Ireland was tasked with preparing a set of recommendations
on possible changes to the constituency boundaries of Ireland. In doing so, they were required
satisfy numerous criteria stipulated by the Irish Constitution, pertaining to features such as
population per representative, contiguity of constituencies, and temporal continuity. The large
number of objectives involved in the design of the constituency boundaries means that this is a
prime use case for multi-objective optimisation.

Multi-objective optimisation is the process of finding a solution to a problem that best
satisfies multiple objectives. While a wide variety of techniques are available for single-objective
optimisation, there are comparatively fewer methods available for multi-objective optimisation.
One example of such a method is an evolutionary algorithm, which involves generating solution
candidates and then evolving them towards a more optimised solution [1].

In this project, an evolutionary algorithm was implemented in Python with the aim of
generating a configuration of Irish constituencies that better satisfied the criteria laid out by the
Constitution.

1.1 Background

Many representative democracies use electoral systems where a territory is split into a num-
ber of small regions called electoral districts. These can be considered the building blocks of
constituencies, which are specified regions that may elect a certain number of representatives.

In these systems, the arrangement of constituencies can significantly impact election results.
Indeed, one can sufficiently manipulate the map so as to favour a certain political party; this
action is referred to as gerrymandering. The word was first used in Boston in reaction to
the redrawing of constituencies through a bill signed by Elbridge Gerry, which favoured the
Democratic-Republican party. The redistricting was said to resemble a mythological salamander,
hence coining the term.

The problem of redistricting involves drawing a map of constituencies such that all members
of the population are fairly represented in the electoral system. In this paper we focus on
redistricting the constituencies of Ireland, using an evolutionary algorithm devised to optimise
the configuration according to the objectives set out in the Constitution of Ireland.

1.2 Electoral Districting in Ireland

On 9 February 2023, a new state body called the Electoral Commission was established to
oversee elections in Ireland [2]. One of the key roles of the Electoral Commission is reviewing

3

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

the the Dáil Éireann constituencies, and making a report and recommendations in relation to
possible changes to constituency boundaries.

Basic Terminology

• The national parliament of Ireland is referred to as Dáil Éireann, or simply the Dáil.

• An elected representative sitting in the Dáil is referred to as a Teachta Dála (TD).

• Ireland is divided up into 3,440 regions known as electoral divisions (EDs).

• These EDs are currently split between 39 constituencies. The current configuration of con-
stituencies in Ireland is shown in Figure 1.1. The constituency boundaries can be changed
by transferring EDs from one constituency to another. The number of constituencies is
not fixed and may be altered in a redrawing of boundaries.

• Ireland is also divided into 26 counties, which are administrative regions governed by bodies
called county councils. The location of constituency boundaries is independent of the
position of county boundaries, but it is considered desirable for constituencies to conform
to county boundaries as far as is practicable. Larger counties are typically split into several
constituencies, and some constituencies breach county boundaries to an appreciable extent,
as illustrated in Figure 1.2.

In this project, we define the redistricting problem to mean redrawing the boundaries of con-
stituencies such that criteria stipulated by the Irish Constitution and the Electoral Commission
are satisfied. These requirements are explained below.

Constitutional Requirements

When deciding on any changes to the current constituency boundaries, the Electoral Commission
is required to observe the following provisions of the Constitution [2, 3]:

• Article 16.2.2°of the Constitution provides that:
The number of members shall from time to time be fixed by law, but the total number of
members of Dáil Éireann shall not be fixed at less than one member for each thirty thousand
of the population, or at more than one member for each twenty thousand of the population.

• Article 16.2.3°of the Constitution provides that:
The ratio between the number of members to be elected at any time for each constituency
and the population of each constituency, as ascertained at the last preceding census, shall,
so far as it is practicable, be the same throughout the country.

Summary of Criteria

In determining the constituency boundaries of Ireland, the Electoral Commission to satisfy the
requirements just mentioned, as well as taking several other criteria into account. The full set
of criteria are the following [2]:

(i) Based on recent population figures, to satisfy Article 16.2.2°of the Constitution, the total
number of members of the Dáil shall not be less than 171 and not more than 181 (compared
to 160 currently).

(ii) Each constituency shall elect 3, 4 or 5 members.

(iii) The breaching of county boundaries shall be avoided as far as it is practicable. (The extent
to which this is satisfied by the current configuration is illustrated in Figure 1.2.)

4

1. INTRODUCTION

Figure 1.1: The current configuration of constituencies.

5

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

Figure 1.2: The current configuration of constituencies, overlaid with county boundaries shown
as grey lines.

6

1. INTRODUCTION

(iv) Each constituency shall be composed of contiguous areas.

(v) There shall be regard to geographic considerations including significant physical features
and the extent of and the density of population in each constituency.

(vi) Subject to the above matters, the Commission shall endeavour to maintain continuity in
relation to the arrangement of constituencies.

Note that adherence to (iv) is considered a priority, because it is a ‘hard’ requirement of the
Constitution, and is designed to minimise frustration amongst voters.

The large number of constraints imposed by the Constitution mean that determining the
optimal constituency boundaries is a challenging problem in multi-objective optimisation. In this
project, numerical methods were implemented in order to find a solution which better satisfied
the requirements and recommendations set out above.

1.3 Definitions and Nomenclature

In this section, the definitions of various terms and metrics used throughout the report are given.
The metrics are based on those used in [4, 5].

National Ratio

The National Ratio of Ireland is defined as

National Ratio =
Recorded Census Population

Number of Dáil Seats
. (1.1)

This metric represents the number of people each TD would represent in a scenario with perfectly
equal representation.

Seat Equivalent Representation

The Seat Equivalent Representation (SER) of a constituency is defined as

SER =
Population

National Ratio
. (1.2)

It quantifies the number of Dáil seats deserved by a constituency based on its population size.
To satisfy the requirements of the Irish Constitution, constituency boundaries should be chosen
such that the SER of each constituency is very close to an integer between 3 and 5, so that the
SER is very close to the actual number of seats allocated to that constituency.

Variance from the National Average

In order to ensure equality of representation, the metric of Variance from the National Average
(VNA) is defined:

VNA =
SER−Assigned Seats

Assigned Seats
. (1.3)

Positive and negative values correspond, respectively, to SER values above and below the na-
tional average; ideally all constituencies would have a VNA of zero. Past Constituency Com-
mission reports such as [5] have chosen a VNA of ±5% as an acceptable threshold value (the
Constituency Commission was responsible for recommending changes to constituency boundar-
ies before the establishment of the Electoral Commission in 2023). In this project, we follow
this choice and aim to reduce the absolute value of the VNA of all constituencies to below 5%.

Table 1.1 shows the current SER and VNA values of all 39 Irish constituencies.

7

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

Table 1.1: The current number of seats allocated to the 39 constituencies, along with their SER
and VNA values. VNA values that lie outside the acceptable threshold of ±0.05 are shown in
bold.

Constituency Seats SER VNA

Carlow-Kilkenny 5 5.575 0.115
Cavan-Monaghan 5 5.048 0.010
Clare 4 4.258 0.064
Cork East 4 4.075 0.019
Cork North-Central 4 4.200 0.050
Cork North-West 3 2.989 −0.004
Cork South-Central 4 4.090 0.023
Cork South-West 3 2.826 −0.058
Donegal 5 5.286 0.057
Dublin Bay North 5 4.962 −0.008
Dublin Bay South 4 4.066 0.017
Dublin Central 4 3.818 −0.046
Dublin Fingal 5 5.467 0.093
Dublin Mid-West 4 3.959 −0.01
Dublin North-West 3 2.423 −0.192
Dublin Rathdown 3 3.170 0.057
Dublin South-Central 4 4.103 0.026
Dublin South-West 5 4.917 −0.017
Dublin West 4 4.182 0.046
Dún Laoghaire 4 4.146 0.036
Galway East 3 2.993 −0.002
Galway West 5 4.866 −0.027
Kerry 5 5.234 0.047
Kildare North 4 4.523 0.131
Kildare South 4 4.212 0.053
Laois-Offaly 5 5.399 0.080
Limerick City 4 4.150 0.037
Limerick County 3 3.037 0.012
Longford-Westmeath 4 4.455 0.114
Louth 5 5.327 0.065
Mayo 4 4.418 0.105
Meath East 3 3.320 0.107
Meath West 3 3.330 0.110
Roscommon-Galway 3 3.040 0.013
Sligo-Leitrim 4 4.060 0.015
Tipperary 5 5.405 0.081
Waterford 4 4.162 0.040
Wexford 5 5.464 0.093
Wicklow 5 5.183 0.037

8

1. INTRODUCTION

1.4 Data Aggregation and Preparation

This project was written in Python. The library pandas [6] was used for handling data,
geopandas [7] was used to implement geographic methods such as unions and intersections,
and to plot geographical data, and matplotlib [8] was used to render maps and plot graphs
and charts.

1.4.1 Data Sources

The data used in the project came primarily from Tailte Éireann (formerly Ordnance Survey
Ireland). In particular, we used 2019 data on electoral divisions [9], and 2017 data on constitu-
ency boundaries [10]. The operation of our algorithm required us to know which constituency
each ED belonged to, and in fact this data was not included in the original datasets. We instead
had to find this manually, by using the .representative point method of geopandas to find
a point inside each ED, and then using a spatial join (sjoin) to merge the ED and constitu-
ency datasets according to the constituency that contained each of these points. This gave us a
GeoDataFrame which linked EDs and constituencies, and contained a geometry column which
allowed the EDs to be plotted on a map.

Since it was necessary to quantify the extent to which a configuration breached county
boundaries, we also needed geographical data on counties. This was also obtained from a 2019
dataset made available by Tailte Éireann [11]. Finally, we also needed to know the population
of each ED. This data was obtained from the Central Statistics Office. At the beginning of the
project, only 2018 population data was available, but data from the 2022 census became available
in August 2023 [12], and it was this data that was ultimately merged with the geographical data
to find the final dataframe. There was no population data for some EDs, so these were assigned
zero population.

An example of what was recorded in the dataframe for the ED Bohernabreena is shown in
Listing 1.1.

1 ED BOHERNABREENA
2 ED ID 267035
3 GUID 2ae19629−1ce0−13a3−e055−000000000001
4 ESRI OID 8
5 CON DUBLIN SOUTH−WEST
6 CON ID 260009C
7 SEATS 5
8 POPULATION 4496
9 COUNTY DUBLIN

10 PROVINCE LEINSTER
11 CENTROID X 711258.06
12 CENTROID Y 720929.15
13 AREA 43938821.49
14 geometry POLYGON ((708211.089 725425.627, 708215.62 725...
15 NEIGHBOURS [267006, 267159, 267143, 257046, 267083, 26714...
16 NB CONS [DUBLIN RATHDOWN, WICKLOW]
17 BOUNDARY 1
18 CHANGE 0

Listing 1.1: An example of a single row of the GeoDataFrame.

Some properties of each ED need explaining:

• CON and SEATS detail the current constituency to which ED belongs, and the former’s

9

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

number of elected seats in the Dáil,

• ED ID, GUID and ESRI ID are all different identification systems for Irish electoral divisions,

• (CENTROID X, CENTROID Y), geometry and AREA contain information about the physical
position, shape and area of ED respectively,

• NEIGHBOURS keeps track of the ED IDs of of the electoral divisions with which ED shares a
border, while NB CONS is the list of ED’s neighbouring constituencies,

• BOUNDARY is 1 if ED has a non-empty NB CONS list or 0 otherwise,

• CHANGE is 1 if ED has previously been flipped as part of the evolution or 0 otherwise.

1.4.2 Finding Neighbouring EDs

The arrays of neighbouring EDs and constituencies for each ED were created by checking which
shared a border using the geopandas.GeoSeries.touches feature. This was streamlined by
defining a function find neighbours, which is shown in Listing 1.2. This function was applied
to the original ED dataset to obtain the NEIGHBOURS and NB CONS columns of the dataframe
shown above. It was important that each element in these columns was a numpy array rather than
a Python list. We initially used lists, but quickly encountered errors because lists are mutable
and were being incrementally altered in processes that were intended to be independent.

1 def find neighbours(df):
2 '''
3 Finds the neighbours and neighbouring CONs of each ED
4 '''
5 # Create column containing empty neigbours list for each ED
6 df['NEIGHBOURS'] = [[] for i in range(len(df))]
7 df['NB CONS'] = [[] for i in range(len(df))]
8 df['BOUNDARY'] = [1 for i in range(len(df))]
9 df['CHANGE'] = [0 for i in range(len(df))]

10

11 # Find neighbours of each ED
12 for i in range(len(df)):
13 t = df['geometry'][i].touches(df['geometry'].values)
14 # Create column of neighbouring EDs
15 df.at[i,'NEIGHBOURS'] = df['ED ID'][t].tolist()
16 # Create column of neighbouring CONs
17 df.at[i,'NB CONS'] = list(np.unique((df.loc[t,'CON']).tolist()))
18 # Remove self from column
19 if df.at[i,'CON'] in df.at[i,'NB CONS']:
20 df.at[i,'NB CONS'].remove(df.at[i,'CON'])
21 # Set type of ED
22 if df.at[i,'NB CONS'] == []:
23 # No neighbouring CONs −> interior
24 df.at[i,'BOUNDARY'] = 0
25 df.at[i,'NEIGHBOURS'] = np.array(df.at[i,'NEIGHBOURS']).astype(str)
26 df.at[i,'NB CONS'] = np.array(df.at[i,'NB CONS']) .astype(str)
27

28 return df

Listing 1.2: The function used to find the EDs and constituencies which neighboured each ED.

It was then possible to identify which EDs had empty NB CONS and their BOUNDARY value
was changed from the initialised 1 to 0.

10

1. INTRODUCTION

Once this function had been called on our aggregated dataframe, we had all the information
we needed to proceed with the development of our algorithm.

1.5 Outline

In this project, an evolutionary algorithm was implemented in Python in order to optimise the
constituency boundaries of Ireland with respect to the criteria of the Constitution. In defining
the algorithm, we identified four main objectives based on our interpretation of the Constitution:

1. Contiguity: All constituencies should be composed of contiguous areas, except in the
case of offshore islands (and other special cases discussed in Chapter 3).

2. SER: Each constituency should have an SER which is close to an integer greater than or
equal to 3. (If the SER of an existing constituency is found to be an integer greater than
5, then the constituency can in principle be split into several smaller constituencies with
SERs close to 3, 4, or 5. For example, an existing constituency with an SER close to 6
could be split into two 3-seater constituencies.)

3. County Boundaries: The constituencies should respect county boundaries as much as
possible.

4. Temporal Continuity: The number of people living in EDs which have switched to
different constituencies should be minimised as much as possible when attempting to satisfy
the other three constraints.

Of these, the first two were considered ‘primary objectives’, and the second two were considered
‘secondary objectives’.

The candidate states were generated and optimised using an evolutionary algorithm, which
is discussed in Chapter 2. The four main criteria above were used to define a reward function,
which allowed the configurations generated by the evolutionary algorithm at each generation to
be evaluated and filtered via a process akin to natural selection. This is discussed in Chapter 3.
Finally, in Chapter 4, we discuss the results produced by the algorithm, and possible improve-
ments that could be made in future.

11

2
Evolutionary Algorithm

We seek to find a solution, i.e. a deviation from the current assignment of electoral divisions to
constituencies, which simultaneously achieves several objectives. We will call the status quo the
current state. Evolution is a similarly motivated process, from which we will take inspiration. In
keeping with the lexicon of evolution, we will call an initial state the parent state and a member
of its succeeding generation an offspring state.

2.1 Evolutionary Algorithm

Step 1: Mutation

Just like randomly mutated genes introduce new traits into a species, we will trigger a random
deviation from the parent state by reassigning some chosen electoral divisions. To preserve
contiguity, we only consider boundary EDs. These are electoral divisions which share a border
with at least one electoral division in a different constituency in the current state. A boundary
ED is flipped if it is reassigned to a neighbouring constituency.

Indiv 001 ... Indiv 100 Indiv 001 ... Indiv 100

...

...

Current State

Indiv 001Indiv 062 Indiv 100

Indiv 001

Starting with the original parent state, the current state, we produce a generation of, say,
100 deviated states which we call individuals. The first ten individuals differ from their parent
by only one boundary ED being flipped. The next ten are produced by two boundary EDs being
flipped. This pattern continues until the last ten, for which 10 boundary EDs were flipped. After
excluding those which have already been flipped, the selection among boundary EDs is random.

Step 2: Natural Selection

In analogy to evolution involving death of unfavourable traits via natural selection, we will only
propagate individuals which tend towards our desired objectives as outlined in 1. To determine
the desirability of the individuals of a generation, we first evaluate the reward function (which
we will see in 3) for all individuals. Then, for example, the 10 most rewarded individuals are
allowed to survive and become new parent states, while the rest are culled from the evolutionary
tree.

12

2. EVOLUTIONARY ALGORITHM

Indiv 001 ... Indiv 100 Indiv 001 ... Indiv 100

...

...

Current State

Indiv 001Indiv 062 Indiv 100

Indiv 001

Step 3: Evolution

This proliferation and culling is repeated until a chosen number of generations is reached. At
this stage, we select the most rewarded individual from the tree; we have created a pathway for
a more optimal solution. It is possible that not a single offspring of the current state is more
rewarded than the latter. In this case, the current state could be a locally optimal solution.

Indiv 001 ... Indiv 100 Indiv 001 ... Indiv 100

...

...

Current State

Indiv 001Indiv 062 Indiv 100

Indiv 001

2.2 Code Implementation

The most important step in the evolution is the first step: the flip. A flip is performed on an
ED chosen at random from the pool of boundary EDs which have not previously been flipped.
Ensuring that the dataframe is accurately updated for the next iteration is necessary to provide
a valid description of the state before the next flip. For example, Bohernabreena, Tibradden and

BALLINASCORNEY TIBRADDEN

KILBRIDE ENNISKERRY

POWERSCOURT

BOHERNABREENA

Figure 2.1: Examples of boundary EDs on the border between Dublin South-West, Dublin
Rathdown, and Wicklow.

13

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

Enniskerry are boundary EDs (see Figure 2.1). In particular, Bohernabreena (Dublin South-
West) is touching two other constituencies. This means it could be flipped to either the turquoise
(Wicklow) or the blue (Dublin Rathdown) constituency when the current state mutates.

Once the random decision is made, the previous constituency (Dublin South-West) is added
to the list of Bohernabreena’s neighbouring constituency, and its new CON value is removed from
that list.

1 def flip(df orig):
2 '''
3 Randomly swaps the CON of a boundary ED.
4 '''
5 # Make copy of input dataframe
6 df = df orig.copy()
7

8 # Filter the dataframe to contain only boundary EDs
9 # which have not previously changed, and have non−zero population

10 pool = df[(df['BOUNDARY']!=0)&(df['CHANGE']<1)&(df['POPULATION']>0)]
11

12 # Randomly choose one of the filtered EDs
13 i = int(random.choice(pool.index.to list()))
14 print(df.loc[i]['NB CONS'])
15 # Get pre−flip CON of chosen ED
16 old con = df.at[i,'CON']
17 # Choose random neighbouring CON of chosen ED
18 new con = random.choice(df.at[i,'NB CONS'])
19 # Update the CON of of the chosen ED; this is the 'flip'
20 df.at[i,'CON'] = new con
21 # Update CHANGE to record that this ED has changed
22 if df.at[i,'CHANGE'] == 1:
23 df.at[i,'CHANGE'] = 2
24 else:
25 df.at[i,'CHANGE'] = 1
26 # Ensure no ED has its own CON as a neighbour
27 i0 = np.where(df.at[i,'NB CONS']==new con)
28 df.at[i,'NB CONS'] = np.delete(df.at[i,'NB CONS'],i0)

Listing 2.1: The flip function used to switch boundary EDs from one constituency to another.

But we must also update Bohernabreena’s neighbours, as they may have outdated BOUNDARY

and NB CONS values, which could impair the next iteration.

1 # def flip(df orig):
2 # −−−−−−−−−−− continued from above −−−−−−−−−−−
3

4 # Get an array of indices of neighbouring EDs
5 nb ed ids = df.at[i,'NEIGHBOURS']
6 nb indices = []
7 for n in nb ed ids:
8 nb indices.append(df.loc[df['ED ID']==n].index[0])
9

10 # For each neighbouring ED y, if new con is not listed in its
neighbouring

11 # CONs, then append it to the list
12 for y in nb indices:
13 if new con not in list(df.at[y,'NB CONS']):
14 df.at[y,'NB CONS'] = np.append(df.at[y,'NB CONS'], new con)
15

14

2. EVOLUTIONARY ALGORITHM

16 # Neighbouring EDs of y
17 nb ed ids y = df.at[y,'NEIGHBOURS']
18 nb indices y = []
19 for n2 in nb ed ids y:
20 nb indices y.append(df[df['ED ID']==n2].index[0])
21

22 # Count number of neighbours of y which are in old con
23 count = 0
24 for z in nb indices y:
25 if df.at[z,'CON'] == old con:
26 count += 1
27 # If no neighbours of y in old con, remove old con from the list of
28 # neighbouring CONs of y
29 if count == 0:
30 i1 = np.where(df.at[y,'NB CONS']==old con)
31 df.at[y,'NB CONS'] = np.delete(df.at[y, 'NB CONS'], i1)
32

33 # Make sure boundary ED's are recorded properly
34 for j in range(len(df)):
35 if df.at[j,'NB CONS'].size == 0:
36 df.at[j,'BOUNDARY'] = 0
37 else:
38 df.at[j,'BOUNDARY']=1
39

40 return df

Listing 2.2: Updating the neighbours of the flipped ED.

This allows us to complete the first step by producing a generation from the parent state.

1 def reproduce(df, max flips, kids):
2 '''
3 Takes in a parent dataframe df and outputs a list containing <kid> child
4 dataframes on which <flips> random flips have been performed.
5 '''
6 offspring = []
7 for j in range(kids):
8 kid data = df.copy()
9 for i in range(int((j/kids)*max flips)+1):

10 kid data = flip(kid data)
11 offspring.append(kid data)
12 return offspring

Listing 2.3: The function used to generate offspring states from the parent state.

Once we have rounded up the newly-born offspring, we may proceed with the second step;
culling. To reduce the exponentially growing storage of individual states, we only kept a set of
the best <keep> individuals of each generation.

1 def kill(offspring, keep):
2 '''
3 Takes in a list of child dataframes, computes the reward function
4 for each, and outputs a list with entries
5 [child dataframe, corresponding reward]
6 for the <keep> best children.
7 '''
8 chopping block=[]

15

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

9 for x in offspring:
10 kid data = x.copy()
11 # Compute rewards
12 r = reward(kid data)
13 chopping block.append([x,r])
14 # Sort by rewards and retain dataframes with <keep> highest rewards
15 the chosen ones = sort array(chopping block)[:keep]
16 return the chosen ones

Listing 2.4: The function used to cull offspring states with the lowest rewards.

The chosen, most rewarded offspring are allowed to reproduce themselves. This is the third step;
evolution. To limit computation time, we looked at a three-generation example with <kids>

individuals per generation.

1 def evolve(df orig, flips, kids, keep):
2 '''
3 Evolve original state to find improved state.
4 '''
5 df = df orig.copy()
6 # Create parents
7 parents and rewards = kill(reproduce(df, flips, kids), keep)
8 # Initialise global best
9 global best = sort array(parents and rewards)

10

11 # Main evolutionary loop
12 i = 1
13 for parent and reward in parents and rewards:
14 # Get parent df
15 parent = parent and reward[0]
16 # Find children
17 children and rewards = kill(reproduce(parent, flips, kids), keep)
18 j = 1
19 for child and reward in children and rewards:
20 # Update global best
21 global best = compare(child and reward, global best, keep)
22 # Get child df
23 child = child and reward[0]
24 # Print status update
25 print(f'Parent {i}, Child {j}')
26 # Find grandchildren
27 gchildren and rewards = kill(reproduce(child, flips, kids), keep

)
28 k = 1
29 for gchild and reward in gchildren and rewards:
30 k += 1
31 # Update global best
32 global best = compare(gchild and reward, global best, keep)
33 j += 1
34 i += 1
35

36 final states = list(map(list, zip(*global best)))[0]
37 final rewards = list(map(list, zip(*global best)))[1]
38

39 return optimal state[0:3], optimal reward[0:3]

Listing 2.5: The main function used to evolve the current configuration.

16

2. EVOLUTIONARY ALGORITHM

The ten best (highest-reward) individuals across generations are stored in an array global best

until the evolutionary tree is stopped. We then return the overall three best states as a list of
dataframes, for their fulfillment of the objectives from Chapter 1 to be analysed (see Chapter
4).

17

3
Reward Function

The configurations of constituencies generated by the evolutionary algorithm were evaluated
using a reward function. This function accepted a configuration X as an input, and returned a
non-negative number which described how well the configuration satisfied the constraints of the
problem.

The first task of the reward function was to eliminate any configurations with non-contiguous
constituencies. This constraint was imposed by defining the reward function to return zero
immediately if X was found to contain any non-contiguous constituencies. Once this constraint
had been imposed, the remainder of the reward function comprised three components, each of
which corresponded to one of the criteria involved in the problem:

Reward(X) = CSERfSER(X) + Ccontfcont(X) + CCBfCB(X), (3.1)

where CSER, Ccont and CCB are, respectively, the reward function components corresponding to
the criteria for SER, temporal continuity, and respect of county boundaries, and CSER, Ccont

and CCB are tuneable parameters. In our algorithm, we prioritised the optimisation of the SER
of all constituencies aboved the continuity and county boundary criteria, so we chose CSER to
be larger than Ccont and CCB.

The implementation of each of the criteria in the reward function is discussed in detail below.

3.1 Contiguity

The contiguity of all constituencies was implemented as a hard constraint, meaning that config-
urations that contained any non-contiguous constituencies were automatically given zero reward,
regardless of how well they satisfied the other three constraints of the problem.

Checking the contiguity of a constituency was one of the most challenging aspects of the
definition of the reward function. Initially, a geometric check was implemented using geopandas,
which involved taking the union of all EDs in a given constituency and checking whether the
result was a single Polygon, in which case the constituency was contiguous, or a MultiPolygon,
in which case the constituency was non-contiguous. In order to implement this, all islands needed
to be removed from the dataset, including both the eight wholly-island EDs, and also all smaller
islands which form part of EDs with components on the mainland. This was achieved by taking
the union of all ED geometries in the entire dataset, and finding the largest Polygon in the
resulting geometry. The dataset of EDs was then clipped to this polygon using an intersection
method, which had the effect of removing all islands from the dataset.

However, when the geometric contiguity check was performed for the current configuration
of constituencies, four constituencies were still found to fail the test. Upon further inspection, it
was discovered that four boundary EDs were in fact non-contiguous. These anomalous cases are

18

3. REWARD FUNCTION

shown in Figure 3.1. Although these constituencies are technically not contiguous, the extent
of the non-contiguity is minor. Since these breaches are considered acceptable, it is desirable
that the current configuration should pass the contiguity check. Each of the four offending
EDs consisted of two non-contiguous components. To circumvent the problem, in each case the
smallest of the two components was simply deleted from the dataset for the duration of the
analysis.

This ad-hoc method was successful in allowing the program to run as intended. However,
the presence of other EDs with very small non-contiguous components in the dataset may have
meant that some configurations which would actually be considered acceptable were rejected on
the basis of their minor non-contiguity. In addition, the geometric unions involved in this type
of contiguity check were very time-consuming, and this function accounted for the vast majority
of the program’s execution time. It was therefore highly desirable to find a different method of
testing for contiguity.

(a) Abbey, Clare (b) Drumacoo, Galway East

(c) Moynalty, Meath East (d) Downings, Kildare North

Figure 3.1: The four problematic non-contiguous boundary electoral divisions.

A significant speed increase was achieved by switching this contiguity check to an alternative
method using the graph theory algorithms included in the library networkx [13]. This method
involved converting the set of EDs in a given constituency to a set of nodes in a graph, where
neighbouring EDs were joined by edges of the graph. The function networkx.is connected

19

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

267050

267052

267048

267100

267108

267051

267119

267107

267049

267053

267103
267109

267101

267112

Figure 3.2: A graph of the EDs in the Dublin Mid-West constituency, with nodes labelled by
ED ID and edges connecting neighbouring EDs.

was used to determine whether the graph was connected, in which case the constituency was
verified to be contiguous. In this case, only the wholly-island EDs needed to be removed from
the dataset, and the issues arising from the presence of non-contiguous EDs were completely
avoided. This change reduced the total execution time to less than a third of its original value.

To further increase the efficiency of this component of the reward function, the contiguity
check was only carried out for

1. Constituencies which had lost or gained at least one ED via a flip, and

2. Constituencies that neighboured at least one flipped ED.

Since the initial configuration contained only contiguous constituencies, checking only the con-
tiguity of these ‘changed’ constituencies was sufficient to ensure global contiguity. In addition,
before the creation of the networkx graph, a simpler preliminary check was implemented whereby
the reward function instantly returned zero if any constituency contained an isolated ED, which
is defined to be an ED with no neighbours in its own constituency. The whole algorithm is
shown in Listing 3.1.

1 def f contiguity(df):
2 '''
3 Checks whether all constituencies in the state are contiguous.
4 Returns 1 if so, 0 if not.
5 '''
6 # Only check for changed CONs
7 changed cons = list(np.unique(df[df['CHANGE']==1]['CON']))
8 # Neighbouring CONs of a flipped ED could also become discontiguous,
9 # so add them to changed cons

10 for i in list(df[df['CHANGE']>0].index):
11 for nc in df.loc[i, 'NB CONS']:

20

3. REWARD FUNCTION

12 if nc not in changed cons:
13 changed cons.append(nc)
14 # Check contiguity of each changed constituency
15 for c in changed cons:
16 # Filter dataframe to just EDs in constituency c
17 d = df[df['CON']==c]
18 # Create list of ED IDs in constituency c
19 ed ids = list(d['ED ID'])
20 # Form nested list of neighbours of each ED
21 nbh list = list([list(nbh) for nbh in d['NEIGHBOURS']])
22 # Form nested list with only neighbours in constituency c
23 nbhs in c = [[n for n in nbh sublist if n in ed ids]
24 for nbh sublist in nbh list]
25 if [] in nbhs in c: # If some ED in CON c has no neighbours in same CON
26 return 0
27 # Create a dictionary of ED ID−neighbour pairs,
28 # but only including neighbours in same constituency
29 nbh dict = {ed id: nbh for ed id, nbh in
30 zip(list(d['ED ID']), nbhs in c)}
31 # Create a graph representing constituency c
32 g = nx.Graph(nbh dict)
33 # Check whether the graph is connected, i.e. whether c is contiguous
34 if not nx.is connected(g):
35 return 0
36 return 1

Listing 3.1: The component of the reward function pertaining to contiguity.

3.2 Seat Equivalent Representation

Once the contiguity of all constituencies in the configuration had been ensured, the next priority
was optimising the overall configuration with respect to the SER of each constituency. To best
satisfy the provisions of the Constitution, it is desirable for the SER of each constituency to be
as close as possible to an integer between 3 and 5 [3]. To apply this criterion to the algorithm,
the SER component of the reward function for a configuration X was defined as

fSER(X) = CSER

∑
CONs

gCON(SER), (3.2)

where CSER is a tuneable parameter, and gCON is a function which takes large values for integer
SERs and near-zero values for SERs far away from integers. Several different candidates for
such a function, an example of which is

gCON(SER) = 1− e−aSER(SER−[SER]), (3.3)

where [SER] is the nearest integer to SER, and aSER is a tuneable parameter. This function
provides a high reward to a constituency with an SER close to an integer, and a low reward to
a constituency with an SER far from an integer, and is plotted in Figure 3.3.

The definition of this component of the reward function in Python is shown in Listing 3.2.

1 def ser(df, c, national ratio=29800):
2 '''
3 Returns SER of constituency c.
4 '''

21

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

SER

g C
O
N
(S
E
R
)

aSER = 0.005
aSER = 0.05
aSER = 0.1
aSER = 0.2

Figure 3.3: The component of the reward function related to SER for a single constituency, for
various values of aSER.

5 data = df[df['CON']==c]
6 pop = data['POPULATION'].sum()
7 return pop/national ratio
8

9 def f(s, d=0.05):
10 '''
11 Bump function for each constituency.
12 '''
13 # Nearest integer to s − we want the SER to be an integer
14 b = round(s)
15 x = np.abs(s−b)
16 if x == 0:
17 return 1
18 return 1 − np.exp(−d/x)
19

20 def f ser(df, a=3, national ratio=29800):
21 '''
22 Checks how desirable SER of all constituencies is.
23 '''
24 result = 0
25 for c in np.unique(df['CON'].to list()):
26 s = ser(df, c, national ratio)
27 result += f(s)
28 return a*result

Listing 3.2: The component of the reward function pertaining to SER.

3.3 County Boundaries

To quantify the extent to which a constituency violated county boundaries, one or more ‘home
counties’ were assigned to each constituency. For example, Cavan and Monaghan were the home
counties of Cavan-Monaghan, while Dublin was the home county of Dún Laoghaire. For each
constituency, the number of EDs (nEDs) which were outside their home county was calculated,
and the total population of these EDs (npeople) was found. The component of the reward function

22

3. REWARD FUNCTION

for county boundaries was chosen to be

fCB(X) = CCB

∑
CONs

e−aCBnpeople−bCBnEDs , (3.4)

where CCB, aCB and bCB are tuneable parameters and we sum over all constituencies. The
implementation of this method in Python is shown in Listing 3.3, where c2c is a dictionary that
links constituencies to their home counties.

1 def f exp(x, y, a, b):
2 '''
3 Exponential decay function.
4 '''
5 return np.exp(−a*x−b*y)
6

7 def f county boundary(df, c2c, a, b):
8 '''
9 Checks how much state preserves county boundaries.

10 '''
11 num ed = 0
12 num ppl = 0
13 for i in range(len(df)):
14 if df.loc[i,'COUNTY'] not in \
15 c2c[c2c['CON']==df.loc[i,'CON']]['HOME COUNTY'].to list():
16 num ed += 1
17 num ppl += df.loc[i,'POPULATION']
18 return f exp(num ppl, num ed, a, b)

Listing 3.3: The component of the reward function pertaining to respect for county boundaries.

Figure 3.4: The component of the reward function pertaining to respect for county boundaries,
for CCB = aCB = bCB = 1.

The decaying exponential function for each constituency is plotted in Figure 3.4. It gives a
reward close to 1 when there are few breaches of county boundaries, and close to 0 when many
people are in a constituency that breaches county boundaries. The value of aCB was chosen to
be higher than that of bCB, so that we prioritised the minimisation of the number of people in a

23

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

constituency that did not match their home county over the minimisation of the number of EDs
outside their home county, as this was deemed to be the more important measure of respect for
county boundaries.

3.4 Temporal Continuity

To quantify the temporal continuity of a state, a similar approach was used as for county
boundaries. For each state, the number of EDs (nEDs) which had changed from the original
state was calculated, and the total population of these EDs (npeople) was found. The chosen
component of the reward function was

fcont(X) = Cconte
−acontnpeople−bcontnEDs , (3.5)

where Ccont, acont and bcont are tuneable parameters. As in the case above involving county
boundaries, we prioritised the minimisation of the number of people in a changed ED over the
minimisation of the number of changed EDs themselves by setting acont to be larger than bcont.

3.5 The Complete Reward Function

The final definition of the reward function is shown in Listing 3.4. If the configuration con-
tains any non-contiguous constituencies, then the reward function immediately returns zero.
Otherwise, it returns a sum of the remaining three components associated with the other three
primary criteria for success.

1 def reward(df, a ser, a cb, b cb, a cont, b cont, nr=29800):
2 '''
3 Reward function for dataframe df.
4 '''
5 if not f contiguity(df):
6 return 0 # No reward if not globally contiguous
7 return f county boundary(df, c2c, a cb, b cb) + \
8 f continuity(df, a cont, b cont) + f ser(df, a ser, nr)

Listing 3.4: The final definition of the reward function.

3.6 Additional Considerations

As well as the four main criteria discussed above, there are also several other factors which
could affect the desirability of a given configuration of constituencies. Examples of such factors
include the compactness of each constituency, the presence of significant geographical features,
and the population density in different regions. Although these additional factors were not fully
implemented in the reward function in this project, it is nevertheless interesting to consider how
such factors could be taken into account.

3.6.1 Compactness

A simple way of quantifying the compactness of a constituency is provided by the convex hull
test. The convex hull of a geometry is the smallest convex polygon containing all the points in
the geometry, and can be computed using the .convex hull attribute included in GeoPandas.

24

3. REWARD FUNCTION

Figure 3.5: The convex hulls of the constituencies Kerry, Wicklow, and Laois-Offaly.

Examples of convex hulls for the constituencies of Kerry, Wicklow and Laois-Offaly are shown
in Figure 3.5.

To test the compactness of a constituency, the total area of the constituency is divided by the
area of its convex hull. This produces a value between 0 and 1, with values close to zero indicating
low compactness, and 1 indicating maximal compactness. The compactness component of the
reward function could then be computed by summing these values for each constituency in the
configuration X and multiplying by a parameter Ccomp:

fcomp(X) = Ccomp

∑
CONs

ACON

Aconvex hull
. (3.6)

Although this test is simple to implement, it is not currently included in the algorithm used
in this project as it produces a substantial increase in the overall execution time.

3.6.2 Significant Physical Features

The Electoral Commission is required to have ‘regard to geographic considerations including
significant physical features’. This means that it is slightly undesirable for constituencies to
breach major geographical features such as mountain ranges or rivers.

In order to implement this criterion into our reward function, we would need to obtain
topological data for the Irish landscape, and data including the course of major rivers and
waterways. We could then implement a component in the reward function which would give a
higher reward to constituencies which did not breach these physical features.

3.6.3 Population Density

The Electoral Commission is also required to have regard to ‘the extent of and the density of
population in each constituency’ when determining constituency boundaries. The distribution
of population throughout a constituency can vary widely, and this can have a significant effect
on the outcome of electoral processes.

To provide an example, as was pointed out in [4], all five of the currently-sitting TDs rep-
resenting Wicklow reside in a subregion comprising twelve EDs concentrated in the north of the
constituency, as highlighted in Figure 3.6. According to preliminary 2022 census results, the
total population of Wicklow is 154,450, while that of the twelve-ED region is 71,473. This means
that approximately 46% of the total population is concentrated in this twelve-ED region. This
is interesting because in terms of the number of EDs involved, the twelve EDs in this subregion
account for just 14.6% of the 82 EDs that make up the whole constituency. Similarly, this
subregion covers an area of 216 km2, which is just 10.7% of the total area covered by Wicklow

25

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

Figure 3.6: The uneven population density of Wicklow. The region shaded in blue contains
approximately 46% of the total population, and is home to all five currently-sitting TDs for
Wicklow.

(2,025 km2). This means that there is a large area of Wicklow which is not represented by any
local TDs in the Dáil.

It would be interesting to extend the reward function implemented in this project to take
account of the population distribution across different regions of Ireland. This may help to
ensure fair representation of all cohorts in the population.

26

4
Results and Discussion

Once the reward function described in the previous chapter was integrated into the evolutionary
algorithm of Chapter 2, the process of natural selection of constituency configurations could
begin. We chose to allow the configurations to evolve for three generations, with a variable
number of flips per offspring state, and of offspring states and culled states per generation.

Once this algorithm had been executed, we obtained a list of three dataframes corresponding
to the configurations with the three highest rewards. A list of the top three was returned since
there was still a substantial benefit to be gained from human input when choosing the ‘best’
configuration, and this allowed us to select the most desirable configuration from the top three
candidates.

In this chapter, we discuss the results produced by our algorithm, and consider some possible
improvements that could be made in future.

4.1 Results

The inherent randomness involved in our algorithm meant that it produced vastly different
‘optimal’ solutions each time it was executed. The configurations generated by the algorithm
also depended on numerous other factors, including the specific values of the parameters in
the reward function, the weights assigned to each objective, the number of flips performed per
offspring state, and the total number of offspring states and culled states per generation.

To provide an example of an optimised configuration, the algorithm was executed for a three-
generation evolution with five flips per offspring state, ten offspring states per generation, and
six culls per generation. In the notation of Listing 3.4, the weights were a ser=3, a cb=1e-10,
b cb=1e-4, a cont=1e-3, and b cont=0.01. For these values of the parameters, the program
took approximately 22 minutes to run.

One of the resulting optimised states is shown in Figure 4.1, where the county boundaries are
also plotted. This state had the second-highest reward of all states generated in this execution.
This configuration will be used as an example case throughout the rest of this chapter. As
required, all constituencies in this configuration are contiguous. The overlaid county boundaries
also show that the breaching of county boundaries is not extreme, considering that the current
configuration includes many such breaches.

The SER and VNA values of each constituency in this optimised configuration are shown in
Table 4.1. Figure 4.3 shows bar charts comparing the SER and |VNA| values of constituencies
in this optimised configuration, to those of the constituencies in the current configuration. It is
difficult to draw conclusions from the first figure, but the second figure clearly shows that the
absolute value of the VNA of most constituencies has decreased in the optimised state compared
to the original state.

27

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

Figure 4.1: One of the top three optimal states produced by the evolutionary algorithm, overlaid
with county boundaries shown as grey lines.

28

4. RESULTS AND DISCUSSION

Figure 4.2: The EDs in the optimal state which had changed from one constituency to another.
The colour coding here matches that shown in the legend in Figure 4.1. The lighter grey lines
here represent the original constituency boundaries.

29

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

Table 4.1: The SER and VNA values for the 39 constituencies in the optimised state. Here, the
number of seats is the rounded value of the SER. VNA values that lie outside the acceptable
threshold of ±0.05 are shown in bold.

Constituency Seats SER VNA

Carlow-Kilkenny 6 5.546 −0.076
Cavan-Monaghan 5 5.048 0.010
Clare 4 4.258 0.064
Cork East 4 3.983 −0.004
Cork North-Central 4 4.198 0.050
Cork North-West 3 2.977 −0.008
Cork South-Central 4 4.119 0.030
Cork South-West 3 2.838 −0.054
Donegal 5 5.286 0.057
Dublin Bay North 5 4.962 −0.008
Dublin Bay South 4 4.066 0.017
Dublin Central 4 4.002 0.001
Dublin Fingal 5 5.467 0.093
Dublin Mid-West 4 3.959 −0.01
Dublin North-West 3 2.593 −0.136
Dublin Rathdown 3 3.170 0.057
Dublin South-Central 4 4.018 0.004
Dublin South-West 5 4.917 −0.017
Dublin West 4 3.913 −0.022
Dún Laoghaire 4 4.146 0.036
Galway East 3 3.010 0.003
Galway West 5 4.866 −0.027
Kerry 5 5.234 0.047
Kildare North 5 4.523 −0.095
Kildare South 4 4.226 0.056
Laois-Offaly 5 5.399 0.080
Limerick City 4 4.150 0.037
Limerick County 3 3.037 0.012
Longford-Westmeath 5 4.504 −0.099
Louth 5 5.327 0.065
Mayo 4 4.377 0.094
Meath East 3 3.320 0.107
Meath West 3 3.330 0.110
Roscommon-Galway 3 2.972 −0.009
Sligo-Leitrim 4 4.102 0.025
Tipperary 5 5.420 0.084
Waterford 4 4.226 0.057
Wexford 5 5.464 0.093
Wicklow 5 5.183 0.037

30

4. RESULTS AND DISCUSSION

C
a
rl
ow

-K
il
k
en

n
y

C
av
a
n
-M

o
n
a
g
h
a
n

C
la
re

C
o
rk

E
a
st

C
o
rk

N
o
rt
h
-C

en
tr
a
l

C
o
rk

N
o
rt
h
-W

es
t

C
o
rk

S
o
u
th
-C

en
tr
a
l

C
o
rk

S
o
u
th
-W

es
t

D
o
n
eg
a
l

D
u
b
li
n
B
ay

N
o
rt
h

D
u
b
li
n
B
ay

S
o
u
th

D
u
b
li
n
C
en

tr
a
l

D
u
b
li
n
F
in
g
a
l

D
u
b
li
n
M
id
-W

es
t

D
u
b
li
n
N
o
rt
h
-W

es
t

D
u
b
li
n
R
a
th
d
ow

n
D
u
b
li
n
S
o
u
th
-C

en
tr
a
l

D
u
b
li
n
S
o
u
th
-W

es
t

D
u
b
li
n
W
es
t

D
ú
n
L
a
o
g
h
a
ir
e

G
a
lw
ay

E
a
st

G
a
lw
ay

W
es
t

K
er
ry

K
il
d
a
re

N
o
rt
h

K
il
d
a
re

S
o
u
th

L
a
o
is
-O

ff
a
ly

L
im

er
ic
k
C
it
y

L
im

er
ic
k
C
o
u
n
ty

L
o
n
g
fo
rd
-W

es
tm

ea
th

L
o
u
th

M
ay
o

M
ea
th

E
a
st

M
ea
th

W
es
t

R
o
sc
o
m
m
o
n
-G

a
lw
ay

S
li
g
o
-L
ei
tr
im

T
ip
p
er
a
ry

W
a
te
rf
o
rd

W
ex
fo
rd

W
ic
k
lo
w

2

3

4

5

6

S
E
R

Original
Optimal

C
a
rl
ow

-K
il
k
en

n
y

C
av
a
n
-M

o
n
a
g
h
a
n

C
la
re

C
o
rk

E
a
st

C
o
rk

N
o
rt
h
-C

en
tr
a
l

C
o
rk

N
o
rt
h
-W

es
t

C
o
rk

S
o
u
th
-C

en
tr
a
l

C
o
rk

S
o
u
th
-W

es
t

D
o
n
eg
a
l

D
u
b
li
n
B
ay

N
o
rt
h

D
u
b
li
n
B
ay

S
o
u
th

D
u
b
li
n
C
en

tr
a
l

D
u
b
li
n
F
in
g
a
l

D
u
b
li
n
M
id
-W

es
t

D
u
b
li
n
N
o
rt
h
-W

es
t

D
u
b
li
n
R
a
th
d
ow

n
D
u
b
li
n
S
o
u
th
-C

en
tr
a
l

D
u
b
li
n
S
o
u
th
-W

es
t

D
u
b
li
n
W
es
t

D
ú
n
L
a
o
g
h
a
ir
e

G
a
lw
ay

E
a
st

G
a
lw
ay

W
es
t

K
er
ry

K
il
d
a
re

N
o
rt
h

K
il
d
a
re

S
o
u
th

L
a
o
is
-O

ff
a
ly

L
im

er
ic
k
C
it
y

L
im

er
ic
k
C
o
u
n
ty

L
o
n
g
fo
rd
-W

es
tm

ea
th

L
o
u
th

M
ay
o

M
ea
th

E
a
st

M
ea
th

W
es
t

R
o
sc
o
m
m
o
n
-G

a
lw
ay

S
li
g
o
-L
ei
tr
im

T
ip
p
er
a
ry

W
a
te
rf
o
rd

W
ex
fo
rd

W
ic
k
lo
w

0

0.05

0.1

0.15

0.2

Constituency

|V
N
A
|

Original
Optimal

Figure 4.3: The SER and |VNA| values of each constituency in the optimal state, compared
with those of the original configuration.

31

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

4.2 Discussion

To evaluate the extent to which our evolutionary algorithm is successful in optimising the
constituency boundaries, it is useful to consider each of our four primary objectives in turn.
Throughout the following discussion, we will frequently refer to the example optimised state
shown in Figure 4.1, but many of the conclusions are generally true for most optimised states
produced by the algorithm.

4.2.1 Contiguity

As is required by the Irish constitution, all configurations generated by our algorithm contain
only contiguous constituencies. This is evident in Figure 4.1, and was always the case for all
other tests performed with the algorithm.

4.2.2 SER

The algorithm is broadly successful at evolving the current state towards a configuration in
which the SERs of most constituencies are very close to integers. This is somewhat evident in
the first subfigure of Figure 4.3, where the SER of several constituencies has moved closer to
the nearest integer value. The improvement is clearer in the second subfigure, which shows that
the evolution has resulted in a decrease in the VNA of many constituencies. Only in the case
of a single constituency, Waterford, has the algorithm caused a VNA that was originally below
the threshold of 5% to rise above it.

Note that in this figure, the VNA of constituencies in both the current and optimised state
have been calculated by assuming that the number of seats assigned to each constituency is
equal to the rounded value of the SER, rather than the actual current number of seats. Figure
4 in the Appendix shows a similar chart, where in this case the VNA values plotted for the
current configuration are computed using the current seat numbers. This chart shows that the
algorithm produces a more marked improvement in VNA, assuming that additional seats can
be allocated to some constituencies in the optimised configuration.

From Table 4.1, we can see that the number of seats that our model recommends be allocated
to Carlow-Kilkenny is 6. This means that Carlow-Kilkenny should be divided into two three-
seater constituencies. In future, it may be interesting to add the capacity for the algorithm to
explicitly perform this division to create two contiguous constituencies, each with an SER close
to 3.

Similar positive results were observed in many of the other optimised states produced when
testing the algorithm. This suggests that the component of the reward function related to SER
is effective in reducing the VNA of constituencies in the configuration.

In future, it might be helpful to explicitly include the ±5% VNA threshold in the definition
of the reward function. This could be achieved by imposing a penalty on configurations where
the VNA of any constituency rose above this threshold.

4.2.3 Respect for County Boundaries

The nature of our algorithm means that any breaching of county boundaries is likely to be minor,
since it is based on a flipping of boundary EDs rather than a full redrawing of constituency
boundaries. Apart from this, our algorithm prioritised the optimisation of SER values over
respect for county boundaries, but it still rewarded configurations with fewer breaches of county
boundaries slightly more.

The extent to which county boundaries are breached by our example optimised state is shown
in Figure 4.1. There is clearly a greater breaching of county boundaries than in the current

32

4. RESULTS AND DISCUSSION

configuration, but it is not extreme. The total number of people residing in a constituency that
does not match their county is 84,177, compared to 78,188 in the current configuration. This is
an increase of just 5,989 people.

4.2.4 Temporal Continuity

As in the case of respect for county boundaries, the basic operation of our algorithm meant that
only small changes were made to the current configuration. This meant that temporal continuity
was maintained to a large extent.

In the case of our example state, Figure 4.2 shows the EDs which have changed constituencies
compared to the current configuration. Evidently, the area covered by these EDs is relatively
small. The total population which had experienced a change in constituency was 28,048, which
is less than 0.6% of the total population of Ireland contained in this dataset.

4.3 Possible Improvements

There are a number of possible improvements that could be made to the algorithm developed
in this project. Some such improvements are discussed below.

4.3.1 Tuning of Weight Parameters

In order to determine the rewards assigned to each configuration produced at each generation
of our algorithm, the weighting assigned to each objective needed to be specified. It may be
the case that the desired weightings in principle may not even yield any new solutions at all. If
the objectives are too strict the algorithm produces very few deviations from the current state,
however this may be unavoidable if the objectives are not appropriately balanced.

We created a model where these weight parameters may be varied and thus many solutions
may be generated for arbitrary sets of weights. By tuning the weight parameters, we can reassign
priority to these objectives if they are not conducive to novel and usable solutions. It would
therefore be useful to perform further testing of the algorithm by systematically altering the
weights and observing the result on the solutions generated.

4.3.2 Stopping Criterion

There are many stopping criteria for evolution algorithms. For instance, one may keep track
of the individual with the best reward function and terminate the algorithm when the newest
generation no longer produces an individual with a better reward function. It is evident that
this approach would get stuck in local optima. We ought not severely punish the algorithm
for allowing weaker children to propagate as this may be necessary to surpass local minima in
reward. Otherwise the algorithm may be dissuaded from leaving the current state at all.

Our approach was the simple choice of terminating after a fixed number of generations.
However, there may be other stopping criteria which could lead to better solutions, and this is
an area which could be investigated further.

4.3.3 Crossover Between Individuals

Our algorithm contrasts with typical evolutionary algorithms in that we did not implement any
crossover between individuals to create the next generation. Each individual has a direct lineage
back to the current state. It is not obvious whether crossover would be better or not. Crossover

33

MULTI-OBJECTIVE OPTIMISATION APPLIED TO THE REDISTRICTING OF IRELAND

has the benefit of allowing individuals to inherit multiple different rewarded features from its
parents, but has the downside of the children becoming more homogeneous.

Considering how few EDs are changed compared to the total ED count, perhaps it may be
advantageous to allow rewarding changes on either end of the country to propagate to the new
generation via crossover as these changes would not directly interfere with each other. That is
to say

∆Reward(change A) + ∆Reward(change B) ≈ ∆Reward(change A + change B),

whereas if for instance two border EDs from the same constituency changed, the change to
reward may be worse than the sum of their individual changes.

It would be interesting to implement crossover between individuals and test whether this
improved the results.

4.3.4 Allowing EDs to Flip Multiple Times

The exclusion of already flipped EDs from the boundary pool imposes a restriction on the
algorithm, since the number of candidate EDs which can change decreases monotonically between
each generation. This restriction was introduced to prevent the algorithm wasting time stuck in
cycles. Perhaps there may be an issue reconciling this ED exclusion with the fixed generation
termination, since if the changes overshoot a candidate solution it is not permitted to backtrack
and telescope towards that solution. It may therefore be useful to experiment with allowing
EDs to flip two or three times before they become locked into place, as this would allow the
algorithm to explore more of the solution space.

4.4 Conclusion

The evolutionary algorithm implemented in this project was broadly successful in achieving
its aim of optimising the constituency boundaries of Ireland with respect to the criteria out-
lined in the Constitution. Considering the two primary objectives, pertaining to contiguity and
SER/VNA, the algorithm produced only configurations with contiguous constituencies, and suc-
ceeded in reducing the absolute value of the VNA of most constituencies, which was the desired
outcome. Turning to the two secondary objectives, relating to respect for county boundaries and
maintenance of temporal continuity, the fact that the algorithm made incremental changes to
the current configuration, and the definition of the reward function, ensured that the secondary
objectives were also relatively well satisfied.

Overall, the algorithm could be considered a successful implementation of multi-objective
optimisation. However, there are numerous improvements that could be made, foremost of which
would be the addition of the capacity for crossover between configurations, as this would likely
lead to a better optimised solution in a shorter time frame.

34

Bibliography

[1] Ajith Abraham and Robert Goldberg. Evolutionary Multiobjective Optimization: Theoret-
ical Advances and Applications. 1st ed. Advanced Information and Knowledge Processing.
Springer, 2005.

[2] Electoral Commission. Electoral Commission Statement – Section 59(2) of the Electoral
Reform Act 2022. 2022. url: https://www.electoralcommission.ie/constituency-
reviews/.

[3] Constitution of Ireland. 1937. url: http://www.irishstatutebook.ie/en/constitution/
index.html.

[4] Theoretical Physics Student Association. Boundary Submission. May 2023. url: https:
//www.electoralcommission.ie/cr-submissions/michael-mitchell/.

[5] Constituency Commission. Constituency Commission Report. 2017. url: https://www.
constituency-commission.ie/cc-oldreports.html.

[6] The pandas Development Team. pandas. Python package. Version 2.0.1. Apr. 2023. doi:
10.5281/zenodo.3509134.

[7] Kelsey Jordahl et al. GeoPandas. Python package. Version 0.8.1. July 2020. doi: 10.5281/
zenodo.3946761.

[8] The matplotlib Development Team. matplotlib: Visualisation with Python. Python pack-
age. Version 3.7.1. Apr. 2023. doi: 10.5281/zenodo.7697899.

[9] Electoral Divisions - National Statutory Boundaries - 2019. 2022. url: https://data-
osi.opendata.arcgis.com/datasets/osi::electoral-divisions-national-statutory-

boundaries-2019/explore.

[10] Constituency Boundaries Ungeneralised - National Electoral Boundaries - 2019. 2022.
url: https://data- osi.opendata.arcgis.com/datasets/osi::constituency-
boundaries-ungeneralised-national-electoral-boundaries-2017/explore.

[11] Counties - National Statutory Boundaries - 2019. 2022. url: https : / / data - osi .

opendata.arcgis.com/datasets/osi::counties-national-statutory-boundaries-

2019/explore.

[12] Census 2022 - Table F1060: Population. 2023. url: https://data.cso.ie/table/F1060.

[13] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart. NetworkX. Python package. Ver-
sion 3.1. 2023. url: https://networkx.org.

35

https://www.electoralcommission.ie/constituency-reviews/
https://www.electoralcommission.ie/constituency-reviews/
http://www.irishstatutebook.ie/en/constitution/index.html
http://www.irishstatutebook.ie/en/constitution/index.html
https://www.electoralcommission.ie/cr-submissions/michael-mitchell/
https://www.electoralcommission.ie/cr-submissions/michael-mitchell/
https://www.constituency-commission.ie/cc-oldreports.html
https://www.constituency-commission.ie/cc-oldreports.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3946761
https://doi.org/10.5281/zenodo.3946761
https://doi.org/10.5281/zenodo.7697899
https://data-osi.opendata.arcgis.com/datasets/osi::electoral-divisions-national-statutory-boundaries-2019/explore
https://data-osi.opendata.arcgis.com/datasets/osi::electoral-divisions-national-statutory-boundaries-2019/explore
https://data-osi.opendata.arcgis.com/datasets/osi::electoral-divisions-national-statutory-boundaries-2019/explore
https://data-osi.opendata.arcgis.com/datasets/osi::constituency-boundaries-ungeneralised-national-electoral-boundaries-2017/explore
https://data-osi.opendata.arcgis.com/datasets/osi::constituency-boundaries-ungeneralised-national-electoral-boundaries-2017/explore
https://data-osi.opendata.arcgis.com/datasets/osi::counties-national-statutory-boundaries-2019/explore
https://data-osi.opendata.arcgis.com/datasets/osi::counties-national-statutory-boundaries-2019/explore
https://data-osi.opendata.arcgis.com/datasets/osi::counties-national-statutory-boundaries-2019/explore
https://data.cso.ie/table/F1060
https://networkx.org

Appendix

C
a
rl
ow

-K
il
k
en

n
y

C
av
a
n
-M

o
n
a
g
h
a
n

C
la
re

C
o
rk

E
a
st

C
o
rk

N
o
rt
h
-C

en
tr
a
l

C
o
rk

N
o
rt
h
-W

es
t

C
o
rk

S
o
u
th
-C

en
tr
a
l

C
o
rk

S
o
u
th
-W

es
t

D
o
n
eg
a
l

D
u
b
li
n
B
ay

N
o
rt
h

D
u
b
li
n
B
ay

S
o
u
th

D
u
b
li
n
C
en

tr
a
l

D
u
b
li
n
F
in
g
a
l

D
u
b
li
n
M
id
-W

es
t

D
u
b
li
n
N
o
rt
h
-W

es
t

D
u
b
li
n
R
a
th
d
ow

n
D
u
b
li
n
S
o
u
th
-C

en
tr
a
l

D
u
b
li
n
S
o
u
th
-W

es
t

D
u
b
li
n
W
es
t

D
ú
n
L
a
o
g
h
a
ir
e

G
a
lw
ay

E
a
st

G
a
lw
ay

W
es
t

K
er
ry

K
il
d
a
re

N
o
rt
h

K
il
d
a
re

S
o
u
th

L
a
o
is
-O

ff
a
ly

L
im

er
ic
k
C
it
y

L
im

er
ic
k
C
o
u
n
ty

L
o
n
g
fo
rd
-W

es
tm

ea
th

L
o
u
th

M
ay
o

M
ea
th

E
a
st

M
ea
th

W
es
t

R
o
sc
o
m
m
o
n
-G

a
lw
ay

S
li
g
o
-L
ei
tr
im

T
ip
p
er
a
ry

W
a
te
rf
o
rd

W
ex
fo
rd

W
ic
k
lo
w

0

0.05

0.1

0.15

0.2

Constituency

V
N
A

Original
Optimal

Figure 4: The absolute value of the VNA of the constituencies in the optimised configuration
compared to that of constituencies in the current configuration, where the VNA calculations
for the current configuration have been performed using the currently assigned seat numbers
rather than the rounded value of the SER. In this case, the algorithm shows a more marked
improvement in VNA, but this is to be expected because the total number of Dáil seats is not
currently large enough to meet the requirements of the Constitution.

36

	Introduction
	Background
	Electoral Districting in Ireland
	Definitions and Nomenclature
	Data Aggregation and Preparation
	Data Sources
	Finding Neighbouring EDs

	Outline

	Evolutionary Algorithm
	Evolutionary Algorithm
	Step 1: Mutation
	Step 2: Natural Selection
	Step 3: Evolution

	Code Implementation

	Reward Function
	Contiguity
	Seat Equivalent Representation
	County Boundaries
	Temporal Continuity
	The Complete Reward Function
	Additional Considerations
	Compactness
	Significant Physical Features
	Population Density

	Results and Discussion
	Results
	Discussion
	Contiguity
	SER
	Respect for County Boundaries
	Temporal Continuity

	Possible Improvements
	Tuning of Weight Parameters
	Stopping Criterion
	Crossover Between Individuals
	Allowing EDs to Flip Multiple Times

	Conclusion

